
 A Version
Control System
Use distributed
version control
to track, branch
and merge
changes to
your codebase
and allow for
rollback of
“bad”
modifications.
Eg Git

 A Consistent
Server Architecture
Use a consistent
development, test
and production
server environment
to avoid hard to find
bugs due to config
di�erences.

 A Mature Test
Environment

Use a modern test environment to avoid
chaos during the run-up to deploying
new code. Eg TestBox

Use containers for easy reuse of the
dev config when creating a test
environment.

 Containers
Use containers to
easily build a
standardized
server
environment
complete with the
correct operating
system, CF server
version, isolated
file system,
standard libraries,
and any other
dependencies.
Eg Docker

 Provisioning Tools
For All Environments
Use scripted provisioning to reduce the cost
and risk of building (and rebuilding!) CF
servers. Eg CFConfig

 A Ticketing
System
Use a ticketing
system to track,
prioritize and filter
customer and
internal
development
issues. Eg. Jira

Use up to date documentation to
reduce the cost of developing and
maintaining your web applications.

 Documentation

 Monitoring and
Profiling Tools
Use a professional CF
server monitor.
Eg. FusionReactor

 A Flexible and
Scriptable
Production
Hosting Platform
Use a dynamic
cloud hosting
environment with
Docker to respond
automatically and
instantly to
changing
application usage.

 A Continuous Integration (CI) System
Use CI system to automate all the parts
of your development workflow and avoid
human error. Eg. Jenkins

1

2 3

4

5

6 7

8

9

10

• Every time a new freelancer works on the site, something breaks.
• Application availability (and reliability) is poor.
• You’d like to consider other options but you don’t have a transition plan.

• You’re responsible for a revenue-generating application that you don’t trust 100%.
• You have no contingency plan for a sudden developer departure or a server outage.
• Implementing new features is a painful, ad-hoc process.
• Your existing supplier provides slow or best-availability turnaround, even for simple requests.

Don’t worry!
Use this checklist to make sure your ColdFusion development process is modern and vibrant.

Cf Alive Best Practices Checklist TeraTech

Cf Alive Best Practices Checklist By: Michaela Light

If you have legacy ColdFusion apps or old CF server versions you may have these issues:

Of course, these issues lead to more problems in your company. Such as extra stress, ine�ciency, higher costs, reduced project velocity and less innovation.

Modern ColdFusion development best practices that reduce stress and ine�ciency and project lifecycle costs while simultaneously increasing project velocity and innovation.

https://git-scm.com/
https://cfconfig.ortusbooks.com/
https://www.docker.com/
https://www.ortussolutions.com/products/testbox
https://jenkins.io/
https://www.atlassian.com/software/jira
https://www.fusion-reactor.com/
https://teratech.com/

